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Method S1: Details of MICE-DURR for three types of data
We start the iterative procedure with some initial values. For example, all the elements in zmis, j are filled in with the average of
the observed values of z j ( j = 1,2, ..., l). Define the corresponding initial completed dataset as Z(0).

In the m-th iteration:

(i) If z j follows a Gaussian distribution, the model is

z∗j,obs = θ0, j1r∗j
+W∗(m)

j,obsθ j + ε j, (1)

where r∗j is the number of cases with observed z∗j and ε j ∼ N(0,σ2
j Ir∗j

).
A regularized regression method is used to fit model (1). The parameter estimates can be obtained as follows:
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Where Pλ (θ j) is a regularization function. We consider the mean of squared residuals as an estimate of σ2
j , denoted by

σ̂
2(m)
j .
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(ii) If z j follows a Bernoulli distribution, the model is

logit(z∗j,obs = 1|W∗(m)
j,obs) = θ0, j1r∗j

+W∗(m)
j,obsθ j, (2)

A regularized regression method is used to fit model (2). The parameter estimates can be obtained as follows:
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Where Pλ (θ j) is a regularization function.

z j,mis is predicted with z(m)
j,mis by drawing randomly from the predictive distribution Bernoulli(
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(iii) If z j follows a Poisson distribution, the model is

log(E[z∗j,obs|W
∗(m)
j,obs]) = θ0, j1r∗j

+W∗(m)
j,obsθ j, (3)

A regularized regression method is used to fit model (3). The parameter estimates can be obtained as follows:
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Where Pλ (θ j) is a regularization function.
z j,mis is predicted with z(m)

j,mis by drawing randomly from the predictive distribution

Poisson(exp(θ̂ (m)
0, j 1n−r j +W(m)

j,misθ̂
(m)

j )). Let z(m)
j = (z(m)

j,mis,z j,obs).

We denote the updated data set after the m-th interation by Z(m) and repeat the procedures iteratively. After the algorithm
converges, the last M imputed data sets after appropriate thinning are chosen for subsequent standard complete-data analysis.

Method S2: Details of MICE-IURR for three types of data
We start the iterative procedure with some initial values. For example, all the elements in zmis, j are filled in with the average of
the observed values of z j ( j = 1,2, ..., l). Define the corresponding initial completed dataset as Z(0).

In the m-th iteration:

(i) If z j follows a Gaussian distribution, we use a regularized regression method to fit a multiple linear regression model
regarding z j,obs as the outcome variable and W(m)

j,obs as the predictor variable, and identify the active set, Ŝ
(m)
j . Let
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Ŝ

(m)
j

denote the subset of W(m)
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. Then the model is

z j,obs = θ0, j1r j +W
Ŝ

(m)
j ,obs

θ j + ε j, (4)

where ε j ∼ N(0,σ2
j Ir j) and 1r j is a vector of length r j with all entries one.

Approximate the distribution of (θ0, j,θ j,σ
2
j ) by using a standard inference procedure such as maximum likelihood.
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Where θ̂
(m)

MLE is the MLE of parameters in model (4) and Σ̂
(m)
MLE is the variance-covariance matrix of the estimated

parameters.
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drawing randomly from the predictive distribution N(θ̂
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(ii) If z j follows a Bernoulli distribution, we use a regularized regression method to fit a multiple linear regression model
regarding z j,obs as the outcome variable and W(m)

j,obs as the predictor variable, and identify the active set, Ŝ
(m)
j . Let

W
Ŝ

(m)
j

denote the subset of W(m)
j that only contains the active set. Correspondingly, denote two components of W

Ŝ
(m)
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by W
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and W
Ŝ
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. Then the model is

logit(Pr(z j,obs = 1|W
Ŝ
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)) = θ0, j1r j +W
Ŝ
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θ j, (5)

Approximate the distribution of (θ0, j,θ j) by using a standard inference procedure such as maximum likelihood.

(θ0, j,θ j)
′ ∼ N(θ̂

(m)
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(m)
MLE)
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Where θ̂
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MLE is the MLE of parameters in model (5) and Σ̂
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MLE is the variance-covariance matrix of the estimated

parameters.

Generate a prediction for z j,mis: randomly draw (θ̂
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Ŝ
(m)
j ,mis

θ̂
(m)
j )

). Let z(m)
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j,mis,z j,obs).

(iii) If z j follows a Poisson distribution, we use a regularized regression method to fit a multiple linear regression model
regarding z j,obs as the outcome variable and W(m)

j,obs as the predictor variable, and identify the active set, Ŝ
(m)
j . Let

W
Ŝ

(m)
j

denote the subset of W(m)
j that only contains the active set. Correspondingly, denote two components of W

Ŝ
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and W
Ŝ
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. Then the model is
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]) = θ0, j1r j +W
Ŝ
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Approximate the distribution of (θ0, j,θ j) by using a standard inference procedure such as maximum likelihood.

(θ0, j,θ j)
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Where θ̂
(m)

MLE is the MLE of parameters in model (6) and Σ̂
(m)
MLE is the variance-covariance matrix of the estimated

parameters.

Generate a prediction for z j,mis: randomly draw (θ̂
(m)
0, j , θ̂

(m)

j ) from N(θ̂
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Ŝ
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j )). Let z(m)
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j,mis,z j,obs).

We denote the updated data set after the m-th interation by Z(m) and repeat the procedures iteratively. After the algorithm
converges, the last M imputed data sets after appropriate thinning are chosen for subsequent standard complete-data analysis.
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